Fire Damages Gamma-Ray Observatory

first_imgNearly one-third of a brand-new gamma-ray observatory in the Canary Islands was destroyed by a fire on 16 October. Because of the damage, the sensitivity will be cut in half for at least the next several months.The German-Spanish-Armenian HEGRA (High-Energy Gamma-Ray Astronomy) facility, constructed over the last 8 years at the Roque de los Muchachos observatory on La Palma, consists of 239 sheds housing particle detectors and six special-purpose telescopes. Some 70 sheds were destroyed and one telescope severely damaged by the fire, the cause of which remains under investigation. “It took the fire brigade many hours to extinguish the flames with helicopters,” says Dutch engineer and eyewitness Rob Hammerschlag.The detector complex became fully operational only last summer. Its main task is to study gamma-rays (high-energy electromagnetic radiation) and cosmic rays (fast-moving electrically charged particles) from space. When both types of rays collide with Earth’s atmosphere, they create showers of secondary particles that are caught by the detectors.HEGRA astronomers are resigned to a period of impaired vision. “Our [detection] sensitivity will be reduced for some time by a factor of 2,” says Eckart Lorenz of the Max Planck Institute for Physics in Munich, Germany, part of the HEGRA collaboration. Nonetheless, he’s optimistic that the observatory’s detection capabilities can soon be brought back to almost full strength. “We estimate that we will be able to repair the telescope and 25 of the most important detector stations … in about 3 months,” he says.last_img read more

Mammalian Cells Spin a New Yarn

first_imgNot even the priciest threads can match the wonders of a simple spider web: Dragline silk is stronger than Kevlar and stretchier than nylon. For more than 100 years, that’s had entrepreneurs and scientists scheming of ways to mass produce it. Now, a researchers have spliced dragline silk genes into mammalian cells and showed for the first time that harvested proteins can be spun into strong, lightweight fibers.Researchers have struggled to splice spider silk genes into other organisms in hopes of recovering enough silk to produce bolts of high-strength material. And although they’ve inserted the genes into bacteria, yeast, and plants, the result has always been disappointing. Even when the proteins have been extracted and purified, they yield only worthless, brittle fibers.A team led by researchers at Nexia Biotechnologies near Montreal, Canada, thought it might have more luck by transferring silk genes into certain mammalian cells that, like those in the spider, secrete silk-building proteins in a water-based solution. Led by molecular biologists Anthoula Lazaris and Costas Karatzas, the team spliced the silk genes into two different cell lines: bovine mammary cells, which excel at secreting proteins outside the cell; and hamster kidney cells, which produce large volumes of recombinant proteins. Both cell lines secreted soluble silk proteins outside the cells, where they could easily be collected.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Then came the big test: Could the proteins be spun into fibers? To find out, the Nexia researchers teamed up with fiber-spinning experts at the U.S. Army Soldier Biological Chemical Command in Natick, Massachusetts. When one of the proteins, dubbed MaSpI, was extracted from water and injected into a methanol solution, the proteins formed strong fibers, the group reports in the 18 January issue of Science (p. 472). Although this new fiber is less flexible than spider fibers, Karatzas thinks that may be because his team’s fibers are made from only one of the two proteins spiders use to spin theirs.The progress “is highly encouraging,” says Randy Lewis, a molecular biologist and spider silk expert at the University of Wyoming in Laramie. Lewis says that if the process of harvesting silk from cell cultures is perfected, it will lead to ultrastrong, flexible fibers for everything from artificial tendons and ligaments to lightweight body armor and high-strength composites.Related sitesNexia research and developmentU.S. Army Soldier Biological Chemical CommandArachnology and spider webslast_img read more

Genetics Policy Expert to Rejoin Collins at NIH

first_imgNew National Institutes of Health Director Francis Collins has recruited a former aide to be his chief of staff.Kathy Hudson now runs the Genetics & Public Policy Center in Washington, D.C., which she founded in 2002 at Johns Hopkins University. The molecular biologist was Collins’s policy director for part of his tenure as head of the National Human Genome Research Institute at NIH.Besides serving as the NIH chief’s top lieutenant, Hudson says she hopes to liaison with the Food and Drug Administration on overseeing genetic tests. Pushing for regulation of those tests was a large part of her center’s work, and she says, “I’m optimistic that we’re actually going to see some of those changes occur.” Although she’s filled out the paperwork, Hudson is still waiting for an official offer. The previous director, Elias Zerhouni, never filled the position.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Hudson is leaving the genetics center as its main funder, the Pew Charitable Trusts, winds down its support this fall. The center’s number of full-time staff members has shrunk since January from a dozen to around seven, says Joan Scott, now deputy director, who will succeed Hudson. The center’s focus will likely expand from policy to moving genetic tests into the clinic, Scott says.last_img read more

European Research Body to Get New Head

first_imgThe European Research Council (ERC) is about to get a new leader, although not in the form most people expected. The ERC, perhaps the most popular science program to come out of the European Union, funds more than 1000 individual researchers doing cutting-edge projects. It has more than €7 billion to spend between 2007 and 2013. Late last year, it announced a high-profile search for a “distinguished scientist” to head the ERC’s Brussels-based Executive Agency starting in 2011. Those plans have now been put on hold, the ERC announced this week. Instead, says Helga Nowotny, chair of the ERC’s Scientific Council, a new secretary-general has been chosen to replace Andreu Mas-Colell, who stepped down for personal reasons in September. The candidate is in contract negotiations with the European Commission, she says, and an announcement could come by the end of the year. At the same time, the ERC announced that a new task force will explore the possibilities for an entirely new management scheme that would put the ERC on a more stable legal and organizational foundation. “The goal is to come up with several models for how a future ERC could look,” Nowotny says.When the ERC was founded in 2007, it was set up as an Executive Agency within the European Commission. That was the most straightforward way to carve out a place for the ERC in the E.U.’s tangled rules and regulations. “It was a quick solution, which we had to take or there would have been no ERC,” Nowotny says. Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) But most observers agree that the arrangement is far from ideal. A review panel found in 2009 that the ERC’s management system was “obsolete” in the way it left nonscientist bureaucrats in charge of day-to-day operations, leading to constant low-level conflict and even “abusive” requirements of volunteer grant reviewers. Now, in the run-up to the E.U.’s next big funding program, the Framework Programme 8, the ERC has a window of opportunity to work out a new structure that fixes those problems, Nowotny says. The new director was supposed to help bridge the gulf between the ERC’s scientific council, which sets the scientific agenda, and the Executive Agency, which manages day-to-day operations. The review noted that the scientific council’s liaison in Brussels, the secretary-general, had no formal power. In response, the European Commission agreed to hire a scientist with experience in both research and science management as the next head of the Executive Agency. The secretary-general post was to be eliminated. But switching to a new leadership structure now would have been disruptive “and wouldn’t solve the real problem,” Nowotny says, so the Scientific Council decided to hire a new secretary-general after all. The new incumbent is aware that the post is “a position without executive power,” Nowotny says. “On the other hand, soft power can go a long way.” The task force, chaired by Robert-Jan Smits, director general for research at the European Commission, should start work before the end of the year, Nowotny says, and should present its results by next summer.last_img read more

Machines That Run on Human Thoughts

first_imgWASHINGTON, D.C.—Former army sergeant Glen Lehman lost his arm in Iraq. But he can still pick up small objects with fine motor control, thanks to a bionic appendage wired to his remaining nerves. “Just by believing I’m moving my phantom limb,” he said, “the arm is in tune with my thoughts.”Lehman showed off his new arm here yesterday at the annual meeting of the American Association for the Advancement of Science (which publishes ScienceNOW). His demonstration was part of a session on breaking down the barriers between mind and machine. In addition to creating better prosthetics for amputees, scientists talked about developing communication devices for locked-in patients and even creating virtual reality avatars that might someday allow people to transfer their entire consciousness into a machine.But first back to Lehman’s arm. Previous arm prosthetics have relied on the remaining muscles of the arm to guess at what the amputee wants to do, which panelist Todd Kuiken of Northwestern University in Evanston, Illinois, described as a “Morse code game.” The technique his group is developing, by contrast, uses the arm’s nerves, which appear to remain intact even 10 years after an amputation. Using this method, his advanced prosthetics can restore fine motor control down to the fingers.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Andrew Schwartz of the University of Pittsburgh had a different approach to mind-controlled prosthetics: an electrode array placed directly on the surface of the brain. His group has previously had success allowing monkeys to control a robotic arm in this way; with training, the monkeys began to treat the arm as their own, even trying to groom it. This summer, Schwartz’s group will begin testing the technique in 20 human patients with spinal cord injuries. Schwartz also showed video of a high-performance, extraordinarily dexterous prosthetic arm developed at Johns Hopkins University, which he called “the best prosthetic in existence.” His group is about to begin trials in monkeys using this arm.Although prosthetics and other brain-powered devices have been around for some time, José del R. Millán of the Ecole Polytechnique Fédérale de Lausanne in Switzerland said that one difficulty is the amount of continuous concentration required to use them. His goal, he said, is to perfect brain-computer interfaces so that their control is as natural as writing or driving a car. A volunteer demonstrated an electrode cap with which he could drive a wheeled robot around the room. Millan listed a number of uses for this technology for bedridden and locked-in patients; joining their families virtually without leaving their beds, participating in research studies, and controlling their own wheelchairs.No matter how good a prosthetic or robot is, however, “the perception of self is at the core of neuroprosthetics,” Millan said. Olaf Blanke, also of Ecole Polytechnique Fédérale de Lausanne, has made progress trying to understand what defines “self,” and how self-awareness can be transferred into a robot or avatar. His research recreates out-of-body experiences. By touching a volunteer on his real body while he viewed a virtual representation of himself on a computer, Blanke and colleagues were able to change the volunteer’s perception of where he was in space: the volunteer believed his consciousness had been transferred to the avatar. Intriguingly, the researchers flipped genders, giving a male volunteer a female avatar, but this didn’t seem to affect the outcome. The only aspect important for the transfer of consciousness, Blanke said, was that the avatar had a vaguely human shape.Integrating the consciousness transfer with real-time, thought-controlled prosthetics, the presenters said, could eventually restore autonomy to bed-bound or locked-in patients, providing them with a higher quality of life.Science will be hosting a live chat with Olaf Blanke and Jose del R. Millan at noon EST on Sunday, 20 February. See our complete coverage of the 2011 AAAS annual meeting in Washington, D.C.last_img read more

Q&A With Richard Muller: A Physicist and His Surprising Climate Data

first_imgLawrence Berkeley Laboratory Richard Muller of Lawrence Berkeley National Laboratory in California has gained a solid scientific reputation for his work in astrophysics and particle physics. He’s waded into policy debates over nuclear weapons and terrorism as a member of the secretive JASON panel. And his introductory course, Physics for Future Presidents, is popular among undergraduates at the University of California, Berkeley. But that impressive track record of research, teaching, and service wasn’t why the science committee of the U.S. House of Representatives invited Muller to testify last week. The topic was climate change research and policy, and Republicans wanted Muller to discuss his recent reanalysis of global temperature records. Republicans expected Muller to challenge the accepted wisdom that the earth has warmed 0.7˚C since the 1880s. But to the dismay of skeptic bloggers, his preliminary analysis supports that canonical view. Muller first delved into paleoclimate research in the 1980s to counter what he calls “a lot of B.S.” in the field. Over a decade, his papers in Nature, Science, and other journals questioned standard explanations of the ice ages involving eccentricities in the planet’s orbit. Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) “He is a very, very independent thinker. He does not take it for granted when he is told something. His instinct is to go check it out for himself,” says fellow Berkeley physicist Raymond Jeanloz, who has served with Muller as a JASON panelist. “He’s a very eclectic, very broad scientist. He’ll apply physics to earth science, and apply earth science to physics or astronomy.” He also began to question what scientists were saying about the likely impacts of present-day climate change, and in November 2009 he became concerned about what he regarded as the imperial behavior shown by some climate scientists in leaked e-mails released as part of what’s become known as Climategate. So in 2009, Muller assembled a team of physicists and statisticians and launched the Berkeley Earth Surface Temperature project. The project has sought to use new techniques to analyze temperature data to see whether problems like the bad stations could bias the results. Muller says he admires the work of prominent skeptic blogger Anthony Watts, a bête noire for most climate scientists, who has published photographs that document problems with hundreds of official U.S. government temperature stations. (Whether those problems affect reported climate trends is controversial.) Muller spoke twice with ScienceInsider after testifying on 31 March before the science committee. Here are excerpts from those conversations. Q: You testified that the scientists maintaining the three climate temperature sets—maintained by NASA, the U.S. National Oceanic and Atmospheric Administration, and the U.K. Met Office—have done “excellent” work. So how did you feel when the e-mails from the University of East Anglia emerged? R.M.: I felt like a woman who’s just learned her husband was cheating on her. It doesn’t mean he’s a bad husband in all ways, but that trust is lost. … The e-mails didn’t relate at all to the temperature work. … It was all the [paleotemperature] proxy data. [But] that disillusioned me. Q: What does your initial examination of 2% of world temperature stations find in terms of world climate? R.M.: Some [readings] are going down—but more are going up. The average is going up. Q: You compared U.S. climate trends from some 300 stations deemed well or moderately-well located with 800 stations that are poorly sited. What did you find? R.M.: There was no statistical difference [in the data] between the good groups and the bad groups. Q: Why was that surprising? R.M.: Because the stations were so bad. … You see stations right up against buildings, next to heat sources. Q: How is your technique different than the methods used by the teams analyzing the three major datasets? R.M.: [Their goal is] to generate long continuous methods. … If there was a change, [like] a station moved, they would adjust the data to try to eliminate that. [But] it makes me very uncomfortable when you adjust the data. … [So] we just cut the data at that point [and create two shorter records]. It means we wind up in our analysis with [not very many] continuous records. Q: Did you have any trouble getting access to data? Access was central to the fight that led to the East Anglia e-mail flap. R.M.: We believe we have 95% of the data that the U.K. [Met Office] is not releasing. … Merging the data—from 16 sources—we found there is a great deal of overlap. Q: You say that “openness and transparency” are central to your project. So why present your findings to Congress before describing your methods in a publication that everybody can read? R.M.: We were originally planning to submit a paper at the same time as the testimony, to a journal which would allow simultaneous publication of the draft online. … This is a problem that causes us great concern. What do you do when you are working on [something] and Congress asks you to testify? It’s a difficult issue. Q: Did photos on [skeptic] Anthony Watts’ Web site showing official temperature gauges in flawed locations like parking lots inspire you to get involved in the debate over the accuracy of the weather stations ? R.M.: I realized that Watts was doing something that was of importance. The issues he raised needed to be addressed. It made me seriously wonder whether the reported global warming may be biased by poor station quality. Watts is a hero for what he’s done. So is [prominent skeptic blogger] Steve McIntyre. Q: What are you hoping to accomplish with Berkeley Earth? R.M.: There’s a huge penumbra of scientists who have … heard from prominent scientists that the debate is over, it’s all been settled and so on. … [So] when they stumble across things like the Watts pictures they’re disturbed. …They feel that many of these questions haven’t been answered. What I’m hoping to do is calm the debate. Q: What’s next for your project? R.M.: Very soon we hope to have both the data and the programs online. And if you don’t like our results, my [advice] is to change the program, but be open and transparent about it. Let us know what you changed. If there’s some assumption we make that you think is invalid than change the assumption and run the programs and see what answer you get. I’m hoping that if we make it that open and that accessible that the people who are interested in the answer … will be won over. Q: Are there any other lines of research that you want to pursue? R.M.: We’re applying for funding to study the ocean temperature data. That will allow us to get a true global picture of temperature trends. *This item has been corrected. Anthony Watts was originally identified as Andrew.last_img read more

Who Will Win First Golden Goose Award?

first_img U.S. House of Represenatives Golden eggs. Representative Jim Cooper hopes a prize will boost appreciation for federally-funded research. For decades, the late Senator William Proxmire (D-WI) poked fun at government-funded studies that he considered a waste of taxpayers’ money by awarding them his Golden Fleece Award. The media loved the periodic prize, which lambasted—among many targets—a study of why prisoners wanted to get out of jail, funded by the Department of Justice, and a study of love, backed by the National Science Foundation. An alliance that includes members of Congress and science and university groups wants to turn Proxmire’s gimmick on its head. Today, they announced plans to award a new Golden Goose Award to research projects that might sound funny, but have produced serious health or economic benefits. “We’ve all seen reports that ridicule odd-sounding research projects as examples of government waste,” said Representative Jim Cooper (D-TN), who helped hatch the idea. “The Golden Goose Award does the opposite.” Cooper hopes it will help demonstrate that government support for science “is no laughing matter. I hope more of my colleagues will join us in supporting, not killing, the goose that lays the golden egg.” Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) The organizations sponsoring the Golden Goose Award—which include the American Association for the Advancement of Science (AAAS, publisher of ScienceInsider), the Association of American Universities, and the Progressive Policy Institute—hope to award it annually starting this fall. Nominations will be reviewed by an eight-member selection committee that includes Bruce Alberts, the editor-in-chief of Science, and Nobel Prize-winning physicist Burton Richter as well as university research officials. Members of Congress endorsing the prize include Cooper and representatives Charlie Dent (R-PA), Robert Dold (R-IL), Rush Holt (D-NJ), and Jason Altmire (D-PA). At a press conference today in the Rayburn House Office Building, AAAS CEO Alan Leshner said he hoped the prize would help remind people that even seemingly offbeat studies can produce unexpected results. When he was a working behavioral scientist, Leshner noted that his own mother “had a hard time understanding why I studied why rats ran in those little running wheels.” It turned out, he said, that such research helped reveal how mammals regulate body fat, a key health issue. Leshner said he hoped researchers would nominate other potentially misunderstood studies for the Golden Goose Award by sending an email to: info@goldengooseaward.org.last_img read more

Discovered a disease? WHO has new rules for avoiding offensive names

first_imgThe World Health Organization (WHO) mostly works to reduce the physical toll of disease. But last week it turned to another kind of harm: the insult and stigma inflicted by diseases named for people, places, and animals. Among the existing monikers that its new guidelines “for the Naming of New Human Infectious Diseases” would discourage: Ebola, swine flu, Rift Valley Fever, Creutzfeldt-Jakob disease, and monkey pox. Instead, WHO says researchers, health officials, and journalists should use more neutral, generic terms, such as severe respiratory disease or novel neurologic syndrome.Many scientists agree that disease names can be problematic, but they aren’t sure the new rulebook is necessarily an improvement. “It will certainly lead to boring names and a lot of confusion,” predicts Linfa Wang, an expert on emerging infectious diseases at the Australian Animal Health Laboratory in Geelong. “You should not take political correctness so far that in the end no one is able to distinguish these diseases,” says Christian Drosten, a virologist at the University of Bonn, Germany.Naming diseases has long been a fraught process. Badly chosen names can stigmatize people, as did gay-related immune deficiency, an early name for AIDS. They can also lead to confusion and hurt tourism and trade. The so-called swine flu, for instance, is not transmitted by pigs, but some countries still banned pork imports or slaughtered pigs after a 2009 outbreak. More recently, some Arab countries were unhappy that a new disease caused by a coronavirus was dubbed Middle East respiratory syndrome.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Although “it’s usually scientists who come up with these names … the WHO gets the diplomatic pressure” if someone takes offense, Drosten says. The new guidelines, released 8 May, aim to smooth the process. “The WHO had to do something to take itself out of the firing line,” Drosten says.Given that news of a new pathogen often spreads quickly, “it is important that an appropriate disease name is assigned by those who first report” the disease, WHO’s guidance notes. Following the guidelines, it adds, could “minimize unnecessary negative impact of disease names on trade, travel, tourism or animal welfare, and avoid causing offence to any cultural, social, national, regional, professional or ethnic groups.”To that end, new disease names should not include geographic locations; the names of people, occupations, animals, or food; or “terms that incite undue fear” (such as unknown, fatal, and epidemic). Instead, the names should use generic descriptions of symptoms (respiratory disease or watery diarrhea) and specific terms describing patients, epidemiology or the environment (juvenile, maternal, seasonal, summer, coastal), as well as pathogen names and arbitrary identifiers (alpha, beta, 1, 2, 3).The group that came up with these recommendations met “more than a few times” over the course of a year, says Kazuaki Miyagishima, director for food safety, zoonoses, and foodborne diseases at WHO, and a member of the panel. Among the ideas they discussed: naming diseases after Greek gods, using a system similar to the one used to name comets or alternating male and female names as is done with hurricanes.”But while naming a hurricane Katrina may not offend people, if we do it for a disease, it’s not just a hurricane for 1 week. It will make its way into the history of human suffering,” Miyagishima says.The guide is well intentioned, but goes too far, says Ian Lipkin, a virologist at Columbia University. “I don’t see how it will be helpful to eliminate names like monkey pox that provide insights into natural hosts and potential sources of infection,” he says.It could also become harder to easily distinguish diseases. For instance, under the new rules, Marburg disease (named after a city in Germany) might have been called filovirus-associated haemorrhagic fever 1, while Ebola (named after a river) might have been filovirus-associated haemorrhagic fever 2. Such bland names “lose something that is more than just quaint,” says Howard Markel, a medical historian at the University of Michigan in Ann Arbor. Drosten adds that geographic names are sometimes justified. It was clear that MERS, for example, was associated with the Middle East. “Would it have been better if we had named it novel betacoronavirus clade C, type 1?” he asks.The new rules make for more difficult names, Miyagishima admits. “But we think we have left a fairly large area for freedom. We do not want to kill the creativity of researchers completely.”Linfa Wang knows all about the difficulty of naming diseases. Two decades ago, he named a virus and the disease it causes after Hendra, a suburb of Brisbane, Australia; he still gets angry calls from residents complaining that the name has hurt property values. These days his strategy is to “go small.” Recently, he named a new henipavirus isolated in a neighborhood called Cedar Grove simply Cedar virus.Virologists encountered other sensitivities with Norwalk virus, named for a city in Ohio. The pathogen is the only species in the genus Norovirus and usually that name is used. In 2011, however, a Japanese individual asked for a change because many people in Japan carry the surname Noro. The International Committee on Taxonomy of Viruses recommended using “Norwalk virus” instead.Acronyms are another good solution, says Ab Osterhaus, a virologist at Erasmus MC in Rotterdam, because they keep names short (another WHO recommendation) and people often forget what the letters stand for. But even acronyms can cause controversy. In 2003, WHO officials coined SARS (severe acute respiratory syndrome) to describe a novel pneumonia spreading in Asia, partly to avoid a name like “Chinese flu.” SARS did not go down well in Hong Kong, however, which is officially known as Hong Kong SAR, for special administrative region.Giving new diseases a number may be the only way to avoid such issues, researchers say. There is precedent. Growing up in China in the late 1960s, Wang remembers that diseases had digits. “I was really scared of number 5 disease,” he recalls. “I don’t know why, you just really did not want to get disease number 5.”last_img read more

Q&A: Iran’s top science official strives for a Silicon Valley spirit

first_imgNEW YORK CITY—During his 2 years in office, Iranian President Hassan Rouhani has filled his cabinet with Ph.D.-trained technocrats. One of the youngest is Sorena Sattari, the vice president for science and technology. A mechanical engineer by training, Sattari, 43, has been a forceful proponent of yoking science more tightly to the economy and says he would like to imbue Iran with an “entrepreneurial spirit.” His Innovation and Prosperity Fund has handed out $600 million in low-interest loans to 1650 technology startups and to other firms seeking to branch out in new directions.He has not turned his back on basic research, however. He cites as “a point of pride” for his country the $30 million Iranian National Observatory, a world-class, 3.4-meter optical telescope that is expected to see first light in 4 or 5 years. Backers credit him with helping get the long-delayed project back on track earlier this year (Science, 4 September, p. 1042). Sattari spoke with Science last week on the sidelines of the United Nations General Assembly. This interview has been edited for brevity and clarity.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Q: Your father, Mansour Sattari, was commander of the Iranian Air Force during the Iran-Iraq war. That was a difficult time to come of age.A: I spent a lot of time on air force bases during the war. Before the revolution [in 1979], Iran had one of the most advanced air forces in the world. But when U.S. military advisers left the country during the revolution, we realized we didn’t understand the technology. I think that’s why Saddam Hussein attacked us. He thought we would survive only 3 months. Iranian pilots were flying aircraft that weren’t reliable because they weren’t maintained well. But we learned how to stand on our own feet. Two days before [the] war ended, we had our last air combat with Iraq. For the first time, we shot down a MiG-29. We used an F-14 aircraft with an Iranian missile. We learned how to build new weapons. That was the start of the Iranian missile program. It was a result of international sanctions.Q: The war and sanctions hardened the Iranian psyche.A: The war was difficult, but what was harder was what went on under the skin of society. Many women lost their husbands, and parents lost their sons. Sometimes I get scared when the phone rings at night, because I think it must be very bad news. That fear comes from those times.Q: Your father died in a military plane crash in 1995. Did you think to follow his path into the military?A: My father didn’t want me to go into the military and didn’t ask me to. He was martyred when I was 22.Q: You had just finished your master’s degree in mechanical engineering at Sharif University of Technology.A: After I lost my father, I had to take care of my family. I left school and started working in the oil and gas ministry. After I collected enough money for my family, I went back to Sharif and completed my Ph.D.Q: In December 2013, Iran put a monkey named Fargam [“auspicious”] into orbit and safely brought him back to Earth. What’s next for the space program?A: We will have to change how we manage the space program, both the technology side and the business side. We’re hoping that with [the] help of foreign companies, we can commercialize the program.Q: Iran and Russia are talking about jointly developing remote-sensing satellites for environmental monitoring. Does this represent a deepening of scientific ties?A: We are now becoming very serious in our relationship with Russia. We have formed for the first time a joint commission on science and technology cooperation, which is much higher level than our economic joint commission. It’s headed by the deputy prime minister of Russia and myself. For the first time, science and technology is driving the relationship between our countries.Q: You said recently that “the most important responsibility” of your vice presidency is changing Iran’s oil-based economy into a knowledge-based economy. A: Before sanctions, our government got 85% of its revenues from oil. This year, we got less than 25% from oil. But we have not succumbed to this pressure. Resistance is ingrained in our nature; it is in Iranian genes. Our mindset has changed because of the sanctions. Now, we believe in investing in science and technology. Innovation is essential to creating a knowledge economy.Q: You’ve talked about privatizing Iran’s research institutes. Do you have a concrete plan?A: I have a mental model. There must be a difference between grants for pure research and support for projects that have potential to become a business. Government funds should be used to expand the boundaries of science. We have wasted a lot of money on institutes that are not contributing to the economy. We thought that we could use oil money to simply buy whatever technology we need. We thought that if we have a building and equipment, we could achieve results. But you have to acquire expertise. In many of our institutes, frankly, we need a new way of thinking.Q: In a speech at the University of Tehran in October 2013, President Rouhani pledged to increase academic freedom at Iranian universities. Are conditions improving?A: It’s unprecedented for an Iranian president to walk in and out of a university and talk to students without some sort of protests. We never experienced this before. It shows how supportive the majority of university students are of his policies. The university atmosphere has become much better compared with the past. Iran is becoming more open. If the United States wants to create a serious scientific relationship, this is the time.Q: This summer you were appointed to the Supreme Council of Cyberspace. One of its tasks is to accelerate the launch of a national intranet. What is the purpose of this network?A: Many countries are building similar networks. It will increase the speed and security of information transfer. And this does not have political intentions behind it.Q: The council also is supposed to pay special attention to “cleaning and securing” the nation’s cyberspace, and promoting Islamic and Iranian norms. Iran now blocks Facebook, Twitter, and other social media websites. Will achieving the council’s goal mean more aggressive Internet censorship?A: The Internet has a good face and a bad face. In the Middle East we have lots of challenges. For example, we have [the Islamic State group] recruiting on the Internet. It’s very scary to see what’s happening in the region. We want to make sure our data hubs remain in Iran. We don’t want messages to go out of the country and then come back in. We want more security.Q: According to the Supreme Council of the Cultural Revolution’s master plan for science, “the revival of the great Islamic civilization” is “contingent upon all-out progress in science.” What does that mean?A: It means that we want to be the superpower of science and technology in the region. And we also want to be No. 1 in the Islamic world as well.Q: Who is No. 1 now?A: Overall, Iran is No. 1. [Smiles.] Now, we are aiming for the whole world.last_img read more

Spinning black holes could fling off clouds of dark matter particles

first_img By Adrian ChoFeb. 22, 2017 , 2:45 PM A spinning black hole (white) should produce huge clouds of particles called axions (blue), which would then produce detectable gravitational waves, a new calculation predicts. Masha Baryakhtar Spinning black holes could fling off clouds of dark matter particles Few things are more mind bending than black holes, gravitational waves, and the nearly massless hypothetical particles called axions, which could be the mysterious dark matter whose gravity holds galaxies together. Now, a team of theoretical physicists has tied all three together in a surprising way. If the axion exists and has the right mass, they argue, then a spinning black hole should produce a vast cloud of the particles, which should, in turn, produce gravitational waves akin to those discovered a year ago by the Laser Interferometer Gravitational-Wave Observatory (LIGO). If the idea is correct, LIGO might be able to detect axions, albeit indirectly.“It’s an awesome idea,” says Tracy Slatyer, a particle astrophysicist at the Massachusetts Institute of Technology (MIT) in Cambridge, who was not involved in the work. “The [LIGO] data is going to be there, and it would be amazing if we saw something.” Benjamin Safdi, a theoretical particle physicist at MIT, is also enthusiastic. “This is really the best idea we have to look for particles in this mass range,” he says.A black hole is the intense gravitational field left behind when a massive star burns out and collapses to a point. Within a certain distance of that point—which defines the black hole’s “event horizon”—gravity grows so strong that not even light can escape. In September 2015, LIGO detected a burst of ripples in space called gravitational waves that emanated from the merging of two black holes.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)The axion—if it exists—is an uncharged particle perhaps a billionth as massive as the electron or lighter. Dreamed up in the 1970s, it helps explain a curious mathematical symmetry in the theory of particles called quarks and gluons that make up protons and neutrons. Axions floating around might also be the dark matter that’s thought to make up 85% of all matter in the universe. Particle physicists are searching for axions in experiments that try to convert them into photons using magnetic fields.But it may be possible to detect axions by studying black holes with LIGO and its twin detectors in Louisiana and Washington states, argue Asimina Arvanitaki and Masha Baryakhtar, theorists at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, and their colleagues.If its mass is in the right range, then an axion stuck in orbit around a black hole should be subject to a process called superradiance that occurs in many situations and causes photons to multiply in a certain type of laser. If an axion strays near, but doesn’t cross, a black hole’s event horizon, then the black hole’s spin will give the axion a boost in energy. And because the axion is a quantum particle with some properties like those of the photon, that boost will create more axions, which will, in turn, interact with the black hole in the same way. The runaway process should thus generate vast numbers of the particles.But for this to take place, a key condition has to be met. A quantum particle like the axion can also act like a wave, with lighter particles having longer wavelengths. For superradiance to kick in, the axion’s wavelength must be as long as the black hole is wide. So the axion’s mass must be extremely light: between 1/10,000,000 and 1/10,000 the range probed in current laboratory experiments. The axions wouldn’t just emerge willy-nilly, either, but would crowd into huge quantum waves like the orbitals of the electrons in an atom. As fantastical as that sounds, the basic physics of superradiance is well established, Safdi says.The axion cloud might reveal itself in multiple ways, Baryakhtar says. Most promising, axions colliding in the cloud should annihilate one another to produce gravitons, the particles thought to make up gravitational waves just as photons make up light. Emerging from orderly quantum clouds, the gravitons would form continuous waves with a frequency set by the axion’s mass. LIGO would be able to spot thousands of such sources per year, Baryakhtar and colleagues estimate in a paper published 8 February in Physical Review D—although tracking those continuous signals may be harder than detecting bursts from colliding black holes. Spotting multiple same-frequency sources would be a “smoking gun” for axions, Slatyer says.The axion clouds could produce indirect signals, too. In principle, a black hole can spin at near light speed. However, generating axions would sap a black hole’s angular momentum and slow it. As a result, LIGO should observe that the spins of colliding black holes never reach that ultimate speed, but top out well below it, Baryakhtar says. Detecting that limit on spin would be challenging, as LIGO can measure a colliding black hole’s spin with only 25% precision.Safdi cautions that the analysis assumes that LIGO will see lots of black-hole mergers and will perform as expected. And if LIGO doesn’t see the signals, it won’t rule out the axion, he says. Still, he says, “This is probably the most promising paper I’ve seen so far on the new physics we might probe with gravitational waves.”last_img read more

In Louisiana, a threatened natural history collection gets a reprieve

first_img In Louisiana, a threatened natural history collection gets a reprieve By Rachael LallensackApr. 4, 2017 , 1:00 PM This plant specimen at the University of Louisiana in Monroe—and some 500,000 others—are looking for a new home. A Louisiana university’s collection of millions of fish and plant specimens no longer faces imminent destruction, but its ultimate resting place is still uncertain.Last week, a Facebook post from the natural history museum at the University of Louisiana in Monroe set off alarm bells within the science community. The museum faced “dark times,” the post noted, because university administrators had indicated that if staff couldn’t find an alternate location for the collection within 48 hours, it would need to be given away to a new institution—all to make room for a new running track and associated field. And if the collection wasn’t removed from campus by the end of July, it would be “destroyed.”The post was viewed 100,000 times, shared 1200 times, and generated more than 400 comments—as well as national headlines—before it was taken down at the request of university administrators. But with the attention, the darkness lifted. “Dozens and dozens” of other museums and academic institutions had offered to take in the collection’s 3 million to 6 million preserved fish, and some 500,000 plant specimens, says Thomas Sasek, a biology professor who also serves as the botany curator of the university’s natural history museum. As a result, “there’s no longer a danger of destruction,” he says, although the decision about exactly where to send the museum’s collection is still being finalized.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)center_img Thomas Sasek/University of Louisiana at Monroe It’s not the first time the museum, part of a small campus that serves about 10,000 students, has faced difficulties. Two biology professors—Neil Douglas and Dale Thomas—founded the collection decades ago. Douglas started collecting fish with his students in 1962, and Thomas added plants.After Douglas and Thomas retired, those who took over—including Sasek—had big shoes to fill. Shrinking university budgets complicated matters, often leaving curators shorthanded. The events that led to the collection’s recent near-death experience began in 2012, when the fish and plants were in storage, awaiting the renovation of a museum space. After a fire damaged a different academic building, administrators moved the collection to make way for classrooms. The specimens ended up in the university’s stadium, which has temperature controlled rooms and a sprinkler system. (The fish are stored in highly flammable alcohol.) But when the stadium was scheduled to get a makeover in August, the collection faced eviction.It is not an unfamiliar story in the museum community, which has seen other collections falter. “It speaks to a broader problem of this country,” says Robert Gopp, policy director at the Natural Science Collections Alliance, and interim director of the American Institute of Biological Sciences in Washington, D.C., and McLean, Virginia, respectively. “We are not investing in research infrastructure in a coordinated or thoughtful way.”Since 2009, Sasek has been able to win nearly $600,000 from the National Science Foundation to make digital pictures and other information about his plant specimens available to the public over the internet. Now, the collection’s impending move could complicate that project, which is part of a regional collaboration with other institutions. There is 18 months of work left to do, he says.For the moment, however, he and his colleagues are focused on the bittersweet process of figuring out who will get their collection, which he says “was the soul of our department.”last_img read more

Designer protein halts flu

first_img Designer protein halts flu Eva-Maria Strauch By Robert F. ServiceJun. 12, 2017 , 11:15 AM There’s a new weapon taking shape in the war on flu, one of the globe’s most dangerous infectious diseases. Scientists have created a designer protein that stops the influenza virus from infecting cells in culture and protects mice from getting sick after being exposed to a heavy dose of the virus. It can also be used as a sensitive diagnostic. And although it isn’t ready as a treatment itself, the protein may point the way to future flu drugs, scientists say.“It’s impressive,” says James Crowe, an immunologist at Vanderbilt University in Nashville, who was not involved in the study. But because it hasn’t yet been tested in humans, “it [still] has a long way to go,” he says.Influenza severely sickens 3–5 million people each year, and it kills between 250,000 and 500,000, mostly the elderly and people with weakened immune systems. Every year, public health officials survey the three flu subtypes circulating in humans and design a vaccine for the next winter season that covers them all. But those vaccines are far from perfect: They don’t always exactly match the viruses actually going around, and in some people, the shots fail to trigger a vigorous immune response.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Drugs are another line of defense. Most focus on the proteins on the virus’s outer coat, neuraminidase and hemagglutinin (HA). Some drugs that block neuraminidase, which helps the virus escape already infected cells, are starting to bump up against viral resistance. HA is scientists’ next target. The mushroom-shaped protein specializes in infecting cells, first by binding a trio of sites on its head to three separate sugar molecules on the surface of targeted cells. Once the virus latches on, parts of HA’s stem act as a grappling hook to pull the virus in close, allowing it to fuse with the cell membrane and release its contents inside.In 2011, researchers led by David Baker, a computational biologist at the University of Washington in Seattle, created a designer protein that binds HA’s stem, which prevented viral infection in cell cultures. But because the stem is often shrouded by additional protein, it can be hard for drugs to reach it.Now, Baker’s team has designed proteins to target HA’s more exposed head group. They started by analyzing x-ray crystal structures that show in atomic detail how flu-binding antibodies in people grab on to the three sugar-binding sites on HA’s head. They copied a small portion of the antibody that wedges itself into one of these binding sites. They then used protein design software called Rosetta to triple that head-binding section, creating a three-part, triangular protein, which the computer calculated would fit like a cap over the top of HA’s head group. Next, they synthesized a gene for making the protein and inserted it into bacteria, which cranked out copies for them to test.In the test, Baker’s team immobilized copies of the protein on a paperlike material called nitrocellulose. They then exposed it to different strains of the virus, which it grabbed and held. “We call it flu glue, because it doesn’t let go,” Baker says. In other experiments, the protein blocked the virus from infecting cells in culture, and it even prevented mice from getting sick when administered either 1 day before or after viral exposure, they report today in Nature Biotechnology.Despite these early successes, Baker and Crowe caution that the newly designed protein isn’t likely to become a medicine itself. For starters, Baker says, the protein doesn’t bind all flu strains that commonly infect humans. That means a future drug may require either a cocktail of HA head group binding proteins or work in combination with stem-binding versions. Second, the safety of designer proteins will have to be studied carefully, Crowe says, because they are markedly different than natural HA-binding antibodies. “The further you get away from a natural antibody, the less you can predict what will happen,” Crowe says.But down the road, Baker says, the new designer protein could serve as the basis for a cheap diagnostic—akin to a pregnancy test—for detecting flu and possibly even medicines able to knock it out. A designer protein (brown and orange) fits snugly on top of the influenza virus’s hemagglutinin protein (green), which helps the virus latch onto and infect cells. last_img read more

How AI detectives are cracking open the black box of deep learning

first_img GRAPHIC: G. GRULLÓN/SCIENCE By Paul VoosenJul. 6, 2017 , 2:00 PM Jason Yosinski sits in a small glass box at Uber’s San Francisco, California, headquarters, pondering the mind of an artificial intelligence. An Uber research scientist, Yosinski is performing a kind of brain surgery on the AI running on his laptop. Like many of the AIs that will soon be powering so much of modern life, including self-driving Uber cars, Yosinski’s program is a deep neural network, with an architecture loosely inspired by the brain. And like the brain, the program is hard to understand from the outside: It’s a black box. This particular AI has been trained, using a vast sum of labeled images, to recognize objects as random as zebras, fire trucks, and seat belts. Could it recognize Yosinski and the reporter hovering in front of the webcam? Yosinski zooms in on one of the AI’s individual computational nodes—the neurons, so to speak—to see what is prompting its response. Two ghostly white ovals pop up and float on the screen. This neuron, it seems, has learned to detect the outlines of faces. “This responds to your face and my face,” he says. “It responds to different size faces, different color faces.”No one trained this network to identify faces. Humans weren’t labeled in its training images. Yet learn faces it did, perhaps as a way to recognize the things that tend to accompany them, such as ties and cowboy hats. The network is too complex for humans to comprehend its exact decisions. Yosinski’s probe had illuminated one small part of it, but overall, it remained opaque. “We build amazing models,” he says. “But we don’t quite understand them. And every year, this gap is going to get a bit larger.”Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Each month, it seems, deep neural networks, or deep learning, as the field is also called, spread to another scientific discipline. They can predict the best way to synthesize organic molecules. They can detect genes related to autism risk. They are even changing how science itself is conducted. The AIs often succeed in what they do. But they have left scientists, whose very enterprise is founded on explanation, with a nagging question: Why, model, why?That interpretability problem, as it’s known, is galvanizing a new generation of researchers in both industry and academia. Just as the microscope revealed the cell, these researchers are crafting tools that will allow insight into the how neural networks make decisions. Some tools probe the AI without penetrating it; some are alternative algorithms that can compete with neural nets, but with more transparency; and some use still more deep learning to get inside the black box. Taken together, they add up to a new discipline. Yosinski calls it “AI neuroscience.” Mark Riedl, Georgia Institute of Technology Like many AI coders, Mark Riedl, director of the Entertainment Intelligence Lab at the Georgia Institute of Technology in Atlanta, turns to 1980s video games to test his creations. One of his favorites is Frogger, in which the player navigates the eponymous amphibian through lanes of car traffic to an awaiting pond. Training a neural network to play expert Frogger is easy enough, but explaining what the AI is doing is even harder than usual.Instead of probing that network, Riedl asked human subjects to play the game and to describe their tactics aloud in real time. Riedl recorded those comments alongside the frog’s context in the game’s code: “Oh, there’s a car coming for me; I need to jump forward.” Armed with those two languages—the players’ and the code—Riedl trained a second neural net to translate between the two, from code to English. He then wired that translation network into his original game-playing network, producing an overall AI that would say, as it waited in a lane, “I’m waiting for a hole to open up before I move.” The AI could even sound frustrated when pinned on the side of the screen, cursing and complaining, “Jeez, this is hard.”Riedl calls his approach “rationalization,” which he designed to help everyday users understand the robots that will soon be helping around the house and driving our cars. “If we can’t ask a question about why they do something and get a reasonable response back, people will just put it back on the shelf,” Riedl says. But those explanations, however soothing, prompt another question, he adds: “How wrong can the rationalizations be before people lose trust?” Marco Ribeiro, a graduate student at the University of Washington in Seattle, strives to understand the black box by using a class of AI neuroscience tools called counter-factual probes. The idea is to vary the inputs to the AI—be they text, images, or anything else—in clever ways to see which changes affect the output, and how. Take a neural network that, for example, ingests the words of movie reviews and flags those that are positive. Ribeiro’s program, called Local Interpretable Model-Agnostic Explanations (LIME), would take a review flagged as positive and create subtle variations by deleting or replacing words. Those variants would then be run through the black box to see whether it still considered them to be positive. On the basis of thousands of tests, LIME can identify the words—or parts of an image or molecular structure, or any other kind of data—most important in the AI’s original judgment. The tests might reveal that the word “horrible” was vital to a panning or that “Daniel Day Lewis” led to a positive review. But although LIME can diagnose those singular examples, that result says little about the network’s overall insight.New counterfactual methods like LIME seem to emerge each month. But Mukund Sundararajan, another computer scientist at Google, devised a probe that doesn’t require testing the network a thousand times over: a boon if you’re trying to understand many decisions, not just a few. Instead of varying the input randomly, Sundararajan and his team introduce a blank reference—a black image or a zeroed-out array in place of text—and transition it step-by-step toward the example being tested. Running each step through the network, they watch the jumps it makes in certainty, and from that trajectory they infer features important to a prediction.Sundararajan compares the process to picking out the key features that identify the glass-walled space he is sitting in—outfitted with the standard medley of mugs, tables, chairs, and computers—as a Google conference room. “I can give a zillion reasons.” But say you slowly dim the lights. “When the lights become very dim, only the biggest reasons stand out.” Those transitions from a blank reference allow Sundararajan to capture more of the network’s decisions than Ribeiro’s variations do. But deeper, unanswered questions are always there, Sundararajan says—a state of mind familiar to him as a parent. “I have a 4-year-old who continually reminds me of the infinite regress of ‘Why?’”The urgency comes not just from science. According to a directive from the European Union, companies deploying algorithms that substantially influence the public must by next year create “explanations” for their models’ internal logic. The Defense Advanced Research Projects Agency, the U.S. military’s blue-sky research arm, is pouring $70 million into a new program, called Explainable AI, for interpreting the deep learning that powers drones and intelligence-mining operations. The drive to open the black box of AI is also coming from Silicon Valley itself, says Maya Gupta, a machine-learning researcher at Google in Mountain View, California. When she joined Google in 2012 and asked AI engineers about their problems, accuracy wasn’t the only thing on their minds, she says. “I’m not sure what it’s doing,” they told her. “I’m not sure I can trust it.”Rich Caruana, a computer scientist at Microsoft Research in Redmond, Washington, knows that lack of trust firsthand. As a graduate student in the 1990s at Carnegie Mellon University in Pittsburgh, Pennsylvania, he joined a team trying to see whether machine learning could guide the treatment of pneumonia patients. In general, sending the hale and hearty home is best, so they can avoid picking up other infections in the hospital. But some patients, especially those with complicating factors such as asthma, should be admitted immediately. Caruana applied a neural network to a data set of symptoms and outcomes provided by 78 hospitals. It seemed to work well. But disturbingly, he saw that a simpler, transparent model trained on the same records suggested sending asthmatic patients home, indicating some flaw in the data. And he had no easy way of knowing whether his neural net had picked up the same bad lesson. “Fear of a neural net is completely justified,” he says. “What really terrifies me is what else did the neural net learn that’s equally wrong?”Today’s neural nets are far more powerful than those Caruana used as a graduate student, but their essence is the same. At one end sits a messy soup of data—say, millions of pictures of dogs. Those data are sucked into a network with a dozen or more computational layers, in which neuron-like connections “fire” in response to features of the input data. Each layer reacts to progressively more abstract features, allowing the final layer to distinguish, say, terrier from dachshund.At first the system will botch the job. But each result is compared with labeled pictures of dogs. In a process called backpropagation, the outcome is sent backward through the network, enabling it to reweight the triggers for each neuron. The process repeats millions of times until the network learns—somehow—to make fine distinctions among breeds. “Using modern horsepower and chutzpah, you can get these things to really sing,” Caruana says. Yet that mysterious and flexible power is precisely what makes them black boxes. A new breed of scientist, with brains of silicon Special package: AI in science Opening up the black box Loosely modeled after the brain, deep neural networks are spurring innovation across science. But the mechanics of the models are mysterious: They are black boxes. Scientists are now developing tools to get inside the mind of the machine. How AI detectives are cracking open the black box of deep learning First, Yosinski rejiggered the classifier to produce images instead of labeling them. Then, he and his colleagues fed it colored static and sent a signal back through it to request, for example, “more volcano.” Eventually, they assumed, the network would shape that noise into its idea of a volcano. And to an extent, it did: That volcano, to human eyes, just happened to look like a gray, featureless mass. The AI and people saw differently.Next, the team unleashed a generative adversarial network (GAN) on its images. Such AIs contain two neural networks. From a training set of images, the “generator” learns rules about imagemaking and can create synthetic images. A second “adversary” network tries to detect whether the resulting pictures are real or fake, prompting the generator to try again. That back-and-forth eventually results in crude images that contain features that humans can recognize.Yosinski and Anh Nguyen, his former intern, connected the GAN to layers inside their original classifier network. This time, when told to create “more volcano,” the GAN took the gray mush that the classifier learned and, with its own knowledge of picture structure, decoded it into a vast array of synthetic, realistic-looking volcanoes. Some dormant. Some erupting. Some at night. Some by day. And some, perhaps, with flaws—which would be clues to the classifier’s knowledge gaps.Their GAN can now be lashed to any network that uses images. Yosinski has already used it to identify problems in a network trained to write captions for random images. He reversed the network so that it can create synthetic images for any random caption input. After connecting it to the GAN, he found a startling omission. Prompted to imagine “a bird sitting on a branch,” the network—using instructions translated by the GAN—generated a bucolic facsimile of a tree and branch, but with no bird. Why? After feeding altered images into the original caption model, he realized that the caption writers who trained it never described trees and a branch without involving a bird. The AI had learned the wrong lessons about what makes a bird. “This hints at what will be an important direction in AI neuroscience,” Yosinski says. It was a start, a bit of a blank map shaded in.The day was winding down, but Yosinski’s work seemed to be just beginning. Another knock on the door. Yosinski and his AI were kicked out of another glass box conference room, back into Uber’s maze of cities, computers, and humans. He didn’t get lost this time. He wove his way past the food bar, around the plush couches, and through the exit to the elevators. It was an easy pattern. He’d learn them all soon. Gupta has a different tactic for coping with black boxes: She avoids them. Several years ago Gupta, who moonlights as a designer of intricate physical puzzles, began a project called GlassBox. Her goal is to tame neural networks by engineering predictability into them. Her guiding principle is monotonicity—a relationship between variables in which, all else being equal, increasing one variable directly increases another, as with the square footage of a house and its price. Gupta embeds those monotonic relationships in sprawling databases called interpolated lookup tables. In essence, they’re like the tables in the back of a high school trigonometry textbook where you’d look up the sine of 0.5. But rather than dozens of entries across one dimension, her tables have millions across multiple dimensions. She wires those tables into neural networks, effectively adding an extra, predictable layer of computation—baked-in knowledge that she says will ultimately make the network more controllable.Caruana, meanwhile, has kept his pneumonia lesson in mind. To develop a model that would match deep learning in accuracy but avoid its opacity, he turned to a community that hasn’t always gotten along with machine learning and its loosey-goosey ways: statisticians.In the 1980s, statisticians pioneered a technique called a generalized additive model (GAM). It built on linear regression, a way to find a linear trend in a set of data. But GAMs can also handle trickier relationships by finding multiple operations that together can massage data to fit on a regression line: squaring a set of numbers while taking the logarithm for another group of variables, for example. Caruana has supercharged the process, using machine learning to discover those operations—which can then be used as a powerful pattern-detecting model. “To our great surprise, on many problems, this is very accurate,” he says. And crucially, each operation’s influence on the underlying data is transparent.Caruana’s GAMs are not as good as AIs at handling certain types of messy data, such as images or sounds, on which some neural nets thrive. But for any data that would fit in the rows and columns of a spreadsheet, such as hospital records, the model can work well. For example, Caruana returned to his original pneumonia records. Reanalyzing them with one of his GAMs, he could see why the AI would have learned the wrong lesson from the admission data. Hospitals routinely put asthmatics with pneumonia in intensive care, improving their outcomes. Seeing only their rapid improvement, the AI would have recommended the patients be sent home. (It would have made the same optimistic error for pneumonia patients who also had chest pain and heart disease.)Caruana has started touting the GAM approach to California hospitals, including Children’s Hospital Los Angeles, where about a dozen doctors reviewed his model’s results. They spent much of that meeting discussing what it told them about pneumonia admissions, immediately understanding its decisions. “You don’t know much about health care,” one doctor said, “but your model really does.”Sometimes, you have to embrace the darkness. That’s the theory of researchers pursuing a third route toward interpretability. Instead of probing neural nets, or avoiding them, they say, the way to explain deep learning is simply to do more deep learning. If we can’t ask … why they do something and get a reasonable response back, people will just put it back on the shelf. AI is changing how we do science. Get a glimpse Researchers have created neural networks that, in addition to filling gaps left in photos, can identify flaws in an artificial intelligence. PHOTOS: ANH NGUYEN Back at Uber, Yosinski has been kicked out of his glass box. Uber’s meeting rooms, named after cities, are in high demand, and there is no surge pricing to thin the crowd. He’s out of Doha and off to find Montreal, Canada, unconscious pattern recognition processes guiding him through the office maze—until he gets lost. His image classifier also remains a maze, and, like Riedl, he has enlisted a second AI to help him understand the first one.last_img read more

These gene-edited pigs are hardy and lean—but how will they taste?

first_img These gene-edited pigs are hardy and lean—but how will they taste? By Kelly ServickOct. 23, 2017 , 3:00 PM Jianguo Zhao center_img “Lean” may not be the term you associate with a good bacon strip or pork chop. But these leaner, cold-hardier piglets, created through CRISPR gene editing, could be a hit with the pork industry. The threat of hypothermia forces cold-climate farms to invest in heat lamps and other accommodations for their shivering piglets. And fatter pig breeds—though tasty—tend to grow more slowly and consume more feed than leaner ones to produce the same amount of meat. As an alternative to conventional breeding, researchers used the gene-editing technology CRISPR to introduce a gene called UCP1. Thought to have disappeared from the ancestors of modern pigs about 20 million years ago, the gene helps cells dissipate more heat and burn fat. Twelve transgenic piglets endowed with a mouse UCP1 gene were better able to maintain their body temperature than their unmodified counterparts when they were exposed to cold for a 4-hour period, the authors report today in the Proceedings of the National Academy of Sciences. And when the pigs were killed, fat made up less of their carcass weight—about 15% versus 20% in unmodified controls—while their average percentage of lean meat increased from about 50% to 53%. Will less fat make them less tasty? The authors don’t expect UCP1 to reduce the fat that accumulates in muscle fibers and contributes to flavor, but they’re now producing more pigs to make sure. Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)last_img read more

Male mammoths fell into traps more than females, giving clues to family structure

first_img Male mammoths fell into traps more than females, giving clues to family structure When it came to mammoths, females had all the luck. Males were more likely to die in natural traps such as tar pits, ice lakes, mudflows, and bogs, according to a new study in Current Biology of DNA extracted from 98 fossilized woolly mammoths found across the Siberian landscape. Because the harsh environment destroys exposed fossils, most remains known to scientists were preserved in such traps (such as the La Brea Tar Pits in Los Angeles, California, pictured above, which trapped Columbian mammoths—close relatives of their woolly cousins). Researchers were examining the genomes of these mammoths for a separate study into mammoth population genetics when they noticed that their dead remains skewed male: About 70% of those caught in natural traps carried a Y chromosome. Woolly mammoths are thought to have had family structures similar to modern elephants, where herds consist of females and young elephants, whereas adolescent and adult males disperse from the herd and roam in smaller bachelor groups or alone. Forced into unknown lands and lacking guidance from older, experienced elephants, male woolly mammoths were likelier to accidentally traipse into a trap and die, the authors conclude. Researchers of extinct mammals should be aware that fossil remains may be skewed toward a particular sex or age, and thus may not represent the whole population, they add.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) By Michael PriceNov. 2, 2017 , 12:20 PMcenter_img Kris Mercer/Alamy Stock Photo last_img read more

What dogs ‘see’ when they smell something

first_imgPetra Jahn What dogs ‘see’ when they smell something By Virginia MorellMar. 5, 2018 , 3:15 PMcenter_img A dog searching for a lost child is typically given an item of clothing to smell. But what does that scent “look” like? To find out, scientists tested 48 dogs, half of which had special police or rescue training. In a laboratory room, the scientists slid each dog’s favorite toy across the floor to a hiding place, while the dog waited in another room. One researcher then brought the dog to the testing room and pointed at the starting point of the odor trail and told the dog, “Look for it! Bring it!” In one trial, the dog found either its favored toy or—surprise!—a different item. Many of the surprised dogs continued searching for the toy used to lay the scent trail—an indication that they had a mental representation of what they expected to find, the scientists report today in the Journal of Comparative Psychology. Both family dogs and working dogs scored about the same on the tests, confirming previous studies showing that education doesn’t necessarily improve a dog’s performance. Previous studies have shown that horses have mental images of their owners and other horses—based on the sounds of their voices and whinnies. But scientists know little about how smell and cognition are linked in animals that rely heavily on smell—such as dogs, elephants, and rats. Now, we have a better idea at least for our pooches: They picture what they’re searching for.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)last_img read more